
24
DATA MINING

The secret of success is to know something nobody else knows.

—Aristotle Onassis

Data mining consists of finding interesting trends or patterns in large datasets, in

order to guide decisions about future activities. There is a general expectation that

data mining tools should be able to identify these patterns in the data with minimal

user input. The patterns identified by such tools can give a data analyst useful and

unexpected insights that can be more carefully investigated subsequently, perhaps

using other decision support tools. In this chapter, we discuss several widely studied

data mining tasks. There are commercial tools available for each of these tasks from

major vendors, and the area is rapidly growing in importance as these tools gain

acceptance from the user community.

We start in Section 24.1 by giving a short introduction to data mining. In Section 24.2,

we discuss the important task of counting co-occurring items. In Section 24.3, we

discuss how this task arises in data mining algorithms that discover rules from the

data. In Section 24.4, we discuss patterns that represent rules in the form of a tree.

In Section 24.5, we introduce a different data mining pattern called clustering and

consider how to find clusters. In Section 24.6, we consider how to perform similarity

search over sequences. We conclude with a short overview of other data mining tasks

in Section 24.7.

24.1 INTRODUCTION TO DATA MINING

Data mining is related to the subarea of statistics called exploratory data analysis,

which has similar goals and relies on statistical measures. It is also closely related to

the subareas of artificial intelligence called knowledge discovery and machine learning.

The important distinguishing characteristic of data mining is that the volume of data

is very large; although ideas from these related areas of study are applicable to data

mining problems, scalability with respect to data size is an important new criterion.

An algorithm is scalable if the running time grows (linearly) in proportion to the

dataset size, given the available system resources (e.g., amount of main memory and

disk). Old algorithms must be adapted or new algorithms must be developed to ensure

scalability.

707



708 Chapter 24

Finding useful trends in datasets is a rather loose definition of data mining: In a

certain sense, all database queries can be thought of as doing just this. Indeed, we

have a continuum of analysis and exploration tools with SQL queries at one end, OLAP

queries in the middle, and data mining techniques at the other end. SQL queries are

constructed using relational algebra (with some extensions); OLAP provides higher-

level querying idioms based on the multidimensional data model; and data mining

provides the most abstract analysis operations. We can think of different data mining

tasks as complex ‘queries’ specified at a high level, with a few parameters that are

user-definable, and for which specialized algorithms are implemented.

In the real world, data mining is much more than simply applying one of these algo-

rithms. Data is often noisy or incomplete, and unless this is understood and corrected

for, it is likely that many interesting patterns will be missed and the reliability of

detected patterns will be low. Further, the analyst must decide what kinds of mining

algorithms are called for, apply them to a well-chosen subset of data samples and vari-

ables (i.e., tuples and attributes), digest the results, apply other decision support and

mining tools, and iterate the process.

The knowledge discovery process, or short KDD process, can roughly be sepa-

rated into four steps. The raw data first undergoes a data selection step, in which we

identify the target dataset and relevant attributes. Then in a data cleaning step, we

remove noise and outliers, transform field values to common units, generate new fields

through combination of existing fields, and bring the data into the relational schema

that is used as input to the data mining activity. The data cleaning step might also

involve a denormalization of the underlying relations. In the data mining step, we

extract the actual patterns. In the final step, the evaluation step, we present the

patterns in an understandable form to the end user, for example through visualization.

The results of any step in the KDD process might lead us back to an earlier step in

order to redo the process with the new knowledge gained. In this chapter, however, we

will limit ourselves to looking at algorithms for some specific data mining tasks. We

will not discuss other aspects of the KDD process further.

24.2 COUNTING CO-OCCURRENCES

We begin by considering the problem of counting co-occurring items, which is motivated

by problems such as market basket analysis. A market basket is a collection of items

purchased by a customer in a single customer transaction. A customer transaction

consists of a single visit to a store, a single order through a mail-order catalog, or

an order at a virtual store on the web. (In this chapter, we will often abbreviate

customer transaction by transaction when there is no confusion with the usual meaning

of transaction in a DBMS context, which is an execution of a user program.) A common

goal for retailers is to identify items that are purchased together. This information can

be used to improve the layout of goods in a store or the layout of catalog pages.



Data Mining 709

transid custid date item qty

111 201 5/1/99 pen 2

111 201 5/1/99 ink 1

111 201 5/1/99 milk 3

111 201 5/1/99 juice 6

112 105 6/3/99 pen 1

112 105 6/3/99 ink 1

112 105 6/3/99 milk 1

113 106 5/10/99 pen 1

113 106 5/10/99 milk 1

114 201 6/1/99 pen 2

114 201 6/1/99 ink 2

114 201 6/1/99 juice 4

Figure 24.1 The Purchases Relation for Market Basket Analysis

24.2.1 Frequent Itemsets

We will use the Purchases relation shown in Figure 24.1 to illustrate frequent itemsets.

The records are shown sorted into groups by transaction. All tuples in a group have

the same transid, and together they describe a customer transaction, which involves

purchases of one or more items. A transaction occurs on a given date, and the name

of each purchased item is recorded, along with the purchased quantity. Observe that

there is redundancy in Purchases: It can be decomposed by storing transid–custid–date

triples separately and dropping custid and date; this may be how the data is actually

stored. However, it is convenient to consider the Purchases relation as it is shown

in Figure 24.1 in order to compute frequent itemsets. Creating such ‘denormalized’

tables for ease of data mining is commonly done in the data cleaning step of the KDD

process.

By examining the set of transaction groups in Purchases, we can make observations

of the form: “In 75 percent of the transactions both a pen and ink are purchased

together.” It is a statement that describes the transactions in the database. Extrap-

olation to future transactions should be done with caution, as discussed in Section

24.3.6. Let us begin by introducing the terminology of market basket analysis. An

itemset is a set of items. The support of an itemset is the fraction of transactions in

the database that contain all the items in the itemset. In our example, we considered

the itemset {pen, ink} and observed that the support of this itemset was 75 percent in

Purchases. We can thus conclude that pens and ink are frequently purchased together.

If we consider the itemset {milk, juice}, its support is only 25 percent. Thus milk and

juice are not purchased together frequently.



710 Chapter 24

Usually the number of sets of items that are frequently purchased together is relatively

small, especially as the size of the itemsets increases. We are interested in all itemsets

whose support is higher than a user-specified minimum support called minsup; we call

such itemsets frequent itemsets. For example, if the minimum support is set to 70

percent, then the frequent itemsets in our example are {pen}, {ink}, {milk}, {pen,

ink}, and {pen, milk}. Note that we are also interested in itemsets that contain only

a single item since they identify items that are purchased frequently.

We show an algorithm for identifying frequent itemsets in Figure 24.2. This algorithm

relies upon a simple yet fundamental property of frequent itemsets:

The a priori property: Every subset of a frequent itemset must also be a

frequent itemset.

The algorithm proceeds iteratively, first identifying frequent itemsets with just one

item. In each subsequent iteration, frequent itemsets identified in the previous iteration

are extended with another item to generate larger candidate itemsets. By considering

only itemsets obtained by enlarging frequent itemsets, we greatly reduce the number

of candidate frequent itemsets; this optimization is crucial for efficient execution. The

a priori property guarantees that this optimization is correct, that is, we don’t miss

any frequent itemsets. A single scan of all transactions (the Purchases relation in

our example) suffices to determine which candidate itemsets generated in an iteration

are frequent itemsets. The algorithm terminates when no new frequent itemsets are

identified in an iteration.

foreach item, // Level 1

check if it is a frequent itemset // appears in > minsup transactions

k = 1

repeat // Iterative, level-wise identification of frequent itemsets

foreach new frequent itemset Ik with k items // Level k + 1

generate all itemsets Ik+1 with k + 1 items, Ik ⊂ Ik+1

Scan all transactions once and check if

the generated k + 1-itemsets are frequent

k = k + 1

until no new frequent itemsets are identified

Figure 24.2 An Algorithm for Finding Frequent Itemsets

We illustrate the algorithm on the Purchases relation in Figure 24.1, with minsup set

to 70 percent. In the first iteration (Level 1), we scan the Purchases relation and

determine that each of these one-item sets is a frequent itemset: {pen} (appears in

all four transactions), {ink} (appears in three out of four transactions), and {milk}

(appears in three out of four transactions).



Data Mining 711

In the second iteration (Level 2), we extend each frequent itemset with an additional

item and generate the following candidate itemsets: {pen, ink}, {pen, milk}, {pen,

juice}, {ink, milk}, {ink, juice}, and {milk, juice}. By scanning the Purchases relation

again, we determine that the following are frequent itemsets: {pen, ink} (appears in

three out of four transactions), and {pen, milk} (appears in three out of four transac-

tions).

In the third iteration (Level 3), we extend these itemsets with an additional item,

and generate the following candidate itemsets: {pen, ink, milk}, {pen, ink, juice}, and

{pen, milk, juice}. (Observe that {ink, milk, juice} is not generated.) A third scan of

the Purchases relation allows us to determine that none of these is a frequent itemset.

The simple algorithm presented here for finding frequent itemsets illustrates the prin-

cipal feature of more sophisticated algorithms, namely the iterative generation and

testing of candidate itemsets. We consider one important refinement of this simple al-

gorithm. Generating candidate itemsets by adding an item to an itemset that is already

known to be frequent is an attempt to limit the number of candidate itemsets using the

a priori property. The a priori property implies that a candidate itemset can only be

frequent if all its subsets are frequent. Thus, we can reduce the number of candidate

itemsets further—a priori to scanning the Purchases database—by checking whether

all subsets of a newly generated candidate itemset are frequent. Only if all subsets of a

candidate itemset are frequent do we compute its support in the subsequent database

scan. Compared to the simple algorithm, this refined algorithm generates fewer can-

didate itemsets at each level and thus reduces the amount of computation performed

during the database scan of Purchases.

Consider the refined algorithm on the Purchases table in Figure 24.1 with minsup= 70

percent. In the first iteration (Level 1), we determine the frequent itemsets of size

one: {pen}, {ink}, and {milk}. In the second iteration (Level 2), only the following

candidate itemsets remain when scanning the Purchases table: {pen, ink}, {pen, milk},

and {ink, milk}. Since {juice} is not frequent, the itemsets {pen, juice}, {ink, juice},

and {milk, juice} cannot be frequent as well and we can eliminate those itemsets a

priori, that is, without considering them during the subsequent scan of the Purchases

relation. In the third iteration (Level 3), no further candidate itemsets are generated.

The itemset {pen, ink, milk} cannot be frequent since its subset {ink, milk} is not

frequent. Thus, the improved version of the algorithm does not need a third scan of

Purchases.

24.2.2 Iceberg Queries

We introduce iceberg queries through an example. Consider again the Purchases rela-

tion shown in Figure 24.1. Assume that we want to find pairs of customers and items



712 Chapter 24

such that the customer has purchased the item more than five times. We can express

this query in SQL as follows:

SELECT P.custid, P.item, SUM (P.qty)

FROM Purchases P

GROUP BY P.custid, P.item

HAVING SUM (P.qty) > 5

Think about how this query would be evaluated by a relational DBMS. Conceptually,

for each (custid, item) pair, we need to check whether the sum of the qty field is greater

than 5. One approach is to make a scan over the Purchases relation and maintain

running sums for each (custid,item) pair. This is a feasible execution strategy as long

as the number of pairs is small enough to fit into main memory. If the number of pairs

is larger than main memory, more expensive query evaluation plans that involve either

sorting or hashing have to be used.

The query has an important property that is not exploited by the above execution

strategy: Even though the Purchases relation is potentially very large and the number

of (custid,item) groups can be huge, the output of the query is likely to be relatively

small because of the condition in the HAVING clause. Only groups where the customer

has purchased the item more than five times appear in the output. For example,

there are nine groups in the query over the Purchases relation shown in Figure 24.1,

although the output only contains three records. The number of groups is very large,

but the answer to the query—the tip of the iceberg—is usually very small. Therefore,

we call such a query an iceberg query. In general, given a relational schema R with

attributes A1, A2, . . . , Ak, and B and an aggregation function aggr, an iceberg query

has the following structure:

SELECT R.A1, R.A2, ..., R.Ak, aggr(R.B)

FROM Relation R

GROUP BY R.A1, ..., R.Ak

HAVING aggr(R.B) >= constant

Traditional query plans for this query that use sorting or hashing first compute the

value of the aggregation function for all groups and then eliminate groups that do not

satisfy the condition in the HAVING clause.

Comparing the query with the problem of finding frequent itemsets that we discussed

in the previous section, there is a striking similarity. Consider again the Purchases

relation shown in Figure 24.1 and the iceberg query from the beginning of this section.

We are interested in (custid, item) pairs that have SUM (P.qty) > 5. Using a variation

of the a priori property, we can argue that we only have to consider values of the custid

field where the customer has purchased at least five items overall. We can generate

such items through the following query:



Data Mining 713

SELECT P.custid

FROM Purchases P

GROUP BY P.custid

HAVING SUM (P.qty) > 5

Similarly, we can restrict the candidate values for the item field through the following

query:

SELECT P.item

FROM Purchases P

GROUP BY P.item

HAVING SUM (P.qty) > 5

If we restrict the computation of the original iceberg query to (custid, item) groups

where the field values are in the output of the previous two queries, we eliminate a

large number of (custid, item) pairs a priori! Thus, a possible evaluation strategy

is to first compute candidate values for the custid and item fields, and only to use

combinations of these values in the evaluation of the original iceberg query. We first

generate candidate field values for individual fields and only use those values that

survive the a priori pruning step as expressed in the two previous queries. Thus, the

iceberg query is amenable to the same bottom-up evaluation strategy that is used to

find frequent itemsets. In particular, we can use the a priori property as follows: We

only keep a counter for a group if each individual component of the group satisfies

the condition expressed in the HAVING clause. The performance improvements of this

alternative evaluation strategy over traditional query plans can be very significant in

practice.

Even though the bottom-up query processing strategy eliminates many groups a priori,

the number of (custid, item) pairs can still be very large in practice—even larger

than main memory. Efficient strategies that use sampling and more sophisticated

hashing techniques have been developed; the references at the end of the chapter

provide pointers to the relevant literature.

24.3 MINING FOR RULES

Many algorithms have been proposed for discovering various forms of rules that suc-

cinctly describe the data. We now look at some widely discussed forms of rules and

algorithms for discovering them.



714 Chapter 24

24.3.1 Association Rules

We will use the Purchases relation shown in Figure 24.1 to illustrate association rules.

By examining the set of transactions in Purchases, we can identify rules of the form:

{pen} ⇒ {ink}

This rule should be read as follows: “If a pen is purchased in a transaction, it is likely

that ink will also be purchased in that transaction.” It is a statement that describes

the transactions in the database; extrapolation to future transactions should be done

with caution, as discussed in Section 24.3.6. More generally, an association rule has

the form LHS ⇒ RHS, where both LHS and RHS are sets of items. The interpretation

of such a rule is that if every item in LHS is purchased in a transaction, then it is likely

that the items in RHS are purchased as well.

There are two important measures for an association rule:

Support: The support for a set of items is the percentage of transactions that

contain all of these items. The support for a rule LHS ⇒ RHS is the support for

the set of items LHS ∪ RHS. For example, consider the rule {pen} ⇒ {ink}. The

support of this rule is the support of the itemset {pen, ink}, which is 75 percent.

Confidence: Consider transactions that contain all items in LHS. The confidence

for a rule LHS ⇒ RHS is the percentage of such transactions that also contain

all items in RHS. More precisely, let sup(LHS) be the percentage of transactions

that contain LHS and let sup(LHS ∪ RHS) be the percentage of transactions

that contain both LHS and RHS. Then the confidence of the rule LHS ⇒ RHS is

sup(LHS ∪ RHS) / sup(RHS). The confidence of a rule is an indication of the

strength of the rule. As an example, consider again the rule {pen} ⇒ {ink}. The

confidence of this rule is 75 percent; 75 percent of the transactions that contain

the itemset {pen} also contain the itemset {ink}.

24.3.2 An Algorithm for Finding Association Rules

A user can ask for all association rules that have a specified minimum support (minsup)

and minimum confidence (minconf), and various algorithms have been developed for

finding such rules efficiently. These algorithms proceed in two steps. In the first step,

all frequent itemsets with the user-specified minimum support are computed. In the

second step, rules are generated using the frequent itemsets as input. We discussed an

algorithm for finding frequent itemsets in Section 24.2, thus we concentrate here on

the rule generation part.

Once frequent itemsets are identified, the generation of all possible candidate rules with

the user-specified minimum support is straightforward. Consider a frequent itemset



Data Mining 715

X with support sX identified in the first step of the algorithm. To generate a rule

from X, we divide X into two itemsets LHS and RHS. The confidence of the rule LHS

⇒ RHS is sX/sLHS, the ratio of the support of X and the support of LHS. From

the a priori property, we know that the support of LHS is larger than minsup, and

thus we have computed the support of LHS during the first step of the algorithm.

We can compute the confidence values for the candidate rule by calculating the ratio

support(X)/ support(LHS) and then check how the ratio compares to minconf.

In general, the expensive step of the algorithm is the computation of the frequent

itemsets and many different algorithms have been developed to perform this step ef-

ficiently. Rule generation—given that all frequent itemsets have been identified—is

straightforward.

In the remainder of this section we will discuss some generalizations of the problem.

24.3.3 Association Rules and ISA Hierarchies

In many cases an ISA hierarchy or category hierarchy is imposed upon the set

of items. In the presence of a hierarchy, a transaction contains for each of its items

implicitly all the item’s ancestors in the hierarchy. For example, consider the category

hierarchy shown in Figure 24.3. Given this hierarchy, the Purchases relation is con-

ceptually enlarged by the eight records shown in Figure 24.4. That is, the Purchases

relation has all tuples shown in Figure 24.1 in addition to the tuples shown in Figure

24.4.

The hierarchy allows us to detect relationships between items at different levels of the

hierarchy. As an example, the support of the itemset {ink, juice} is 50 percent, but if

we replace juice with the more general category beverage, the support of the resulting

itemset {ink, beverage} increases to 75 percent. In general, the support of an itemset

can only increase if an item is replaced by one of its ancestors in the ISA hierarchy.

Assuming that we actually physically add the eight records shown in Figure 24.4 to the

Purchases relation, we can use any algorithm for computing frequent itemsets on the

augmented database. Assuming that the hierarchy fits into main memory, we can also

perform the addition on-the-fly while we are scanning the database, as an optimization.

Stationery Beverage

Pen Ink Juice Milk

Figure 24.3 An ISA Category Taxonomy



716 Chapter 24

transid custid date item qty

111 201 5/1/99 stationery 3

111 201 5/1/99 beverage 9

112 105 6/3/99 stationery 2

112 105 6/3/99 beverage 1

113 106 5/10/99 stationery 1

113 106 5/10/99 beverage 1

114 201 6/1/99 stationery 4

114 201 6/1/99 beverage 4

Figure 24.4 Conceptual Additions to the Purchases Relation with ISA Hierarchy

24.3.4 Generalized Association Rules

Although association rules have been most widely studied in the context of market

basket analysis, or analysis of customer transactions, the concept is more general.

Consider the Purchases relation as shown in Figure 24.5, grouped by custid. By ex-

amining the set of customer groups, we can identify association rules such as {pen} ⇒

{milk}. This rule should now be read as follows: “If a pen is purchased by a customer,

it is likely that milk will also be purchased by that customer.” In the Purchases relation

shown in Figure 24.5, this rule has both support and confidence of 100 percent.

transid custid date item qty

112 105 6/3/99 pen 1

112 105 6/3/99 ink 1

112 105 6/3/99 milk 1

113 106 5/10/99 pen 1

113 106 5/10/99 milk 1

114 201 5/15/99 pen 2

114 201 5/15/99 ink 2

114 201 5/15/99 juice 4

111 201 5/1/99 pen 2

111 201 5/1/99 ink 1

111 201 5/1/99 milk 3

111 201 5/1/99 juice 6

Figure 24.5 The Purchases Relation Sorted on Customer Id



Data Mining 717

Similarly, we can group tuples by date and identify association rules that describe

purchase behavior on the same day. As an example consider again the Purchases

relation. In this case, the rule {pen} ⇒ {milk} is now interpreted as follows: “On a

day when a pen is purchased, it is likely that milk will also be purchased.”

If we use the date field as grouping attribute, we can consider a more general problem

called calendric market basket analysis. In calendric market basket analysis, the

user specifies a collection of calendars. A calendar is any group of dates, e.g., every

Sunday in the year 1999, or every first of the month. A rule holds if it holds on every

day in the calendar. Given a calendar, we can compute association rules over the set

of tuples whose date field falls within the calendar.

By specifying interesting calendars, we can identify rules that might not have enough

support and confidence with respect to the entire database, but that have enough

support and confidence on the subset of tuples that fall within the calendar. On the

other hand, even though a rule might have enough support and confidence with respect

to the complete database, it might gain its support only from tuples that fall within

a calendar. In this case, the support of the rule over the tuples within the calendar is

significantly higher than its support with respect to the entire database.

As an example, consider the Purchases relation with the calendar every first of the

month. Within this calendar, the association rule pen ⇒ juice has support and con-

fidence of 100 percent, whereas over the entire Purchases relation, this rule only has

50 percent support. On the other hand, within the calendar, the rule pen ⇒ milk has

support of confidence of 50 percent, whereas over the entire Purchases relation it has

support and confidence of 75 percent.

More general specifications of the conditions that must be true within a group for a

rule to hold (for that group) have also been proposed. We might want to say that all

items in the LHS have to be purchased in a quantity of less than two items, and all

items in the RHS must be purchased in a quantity of more than three.

Using different choices for the grouping attribute and sophisticated conditions as in the

above examples, we can identify rules that are more complex than the basic association

rules discussed earlier. These more complex rules, nonetheless, retain the essential

structure of an association rule as a condition over a group of tuples, with support and

confidence measures defined as usual.

24.3.5 Sequential Patterns

Consider the Purchases relation shown in Figure 24.1. Each group of tuples, having

the same custid value, can be thought of as a sequence of transactions ordered by date.

This allows us to identify frequently arising buying patterns over time.



718 Chapter 24

We begin by introducing the concept of a sequence of itemsets. Each transaction

is represented by a set of tuples, and by looking at the values in the item column,

we get a set of items purchased in that transaction. Thus, the sequence of trans-

actions associated with a customer corresponds naturally to a sequence of itemsets

purchased by the customer. For example, the sequence of purchases for customer 201

is 〈{pen,ink,milk,juice}, {pen,ink,juice}〉.

A subsequence of a sequence of itemsets is obtained by deleting one or more item-

sets, and is also a sequence of itemsets. We say that a sequence 〈a1, . . . , am〉 is con-

tained in another sequence S if S has a subsequence 〈b1, . . . , bm〉 such that ai ⊆ bi,

for 1 ≤ i ≤ m. Thus, the sequence 〈{pen}, {ink,milk}, {pen,juice}〉 is contained in

〈{pen,ink}, {shirt}, {juice,ink,milk}, {juice,pen,milk}〉. Note that the order of items

within each itemset does not matter. However, the order of itemsets does matter:

the sequence 〈{pen}, {ink,milk}, {pen,juice}〉 is not contained in 〈{pen,ink}, {shirt},

{juice,pen,milk}, {juice,milk,ink}〉.

The support for a sequence S of itemsets is the percentage of customer sequences of

which S is a subsequence. The problem of identifying sequential patterns is to find all

sequences that have a user-specified minimum support. A sequence 〈a1, a2, a3, . . . , am〉

with minimum support tells us that customers often purchase the items in set a1 in

a transaction, then in some subsequent transaction buy the items in set a2, then the

items in set a3 in a later transaction, and so on.

Like association rules, sequential patterns are statements about groups of tuples in

the current database. Computationally, algorithms for finding frequently occurring

sequential patterns resemble algorithms for finding frequent itemsets. Longer and

longer sequences with the required minimum support are identified iteratively in a

manner that is very similar to the iterative identification of frequent itemsets.

24.3.6 The Use of Association Rules for Prediction

Association rules are widely used for prediction, but it is important to recognize that

such predictive use is not justified without additional analysis or domain knowledge.

Association rules describe existing data accurately but can be misleading when used

naively for prediction. For example, consider the rule

{pen} ⇒ {ink}

The confidence associated with this rule is the conditional probability of an ink pur-

chase given a pen purchase over the given database; that is, it is a descriptive measure.

We might use this rule to guide future sales promotions. For example, we might offer

a discount on pens in order to increase the sales of pens and, therefore, also increase

sales of ink.



Data Mining 719

However, such a promotion assumes that pen purchases are good indicators of ink

purchases in future customer transactions (in addition to transactions in the current

database). This assumption is justified if there is a causal link between pen purchases

and ink purchases; that is, if buying pens causes the buyer to also buy ink. However,

we can infer association rules with high support and confidence in some situations

where there is no causal link between LHS and RHS! For example, suppose that pens

are always purchased together with pencils, perhaps because of customers’ tendency

to order writing instruments together. We would then infer the rule

{pencil} ⇒ {ink}

with the same support and confidence as the rule

{pen} ⇒ {ink}

However, there is no causal link between pencils and ink. If we promote pencils, a

customer who purchases several pencils due to the promotion has no reason to buy

more ink. Thus, a sales promotion that discounted pencils in order to increase the

sales of ink would fail.

In practice, one would expect that by examining a large database of past transactions

(collected over a long time and a variety of circumstances) and restricting attention

to rules that occur often (i.e., that have high support), we minimize inferring mis-

leading rules. However, we should bear in mind that misleading, noncausal rules will

be generated. Therefore, we should treat the generated rules as possibly, rather than

conclusively, identifying causal relationships. Although association rules do not indi-

cate causal relationships between the LHS and RHS, we emphasize that they provide

a useful starting point for identifying such relationships, using either further analysis

or a domain expert’s judgment; this is the reason for their popularity.

24.3.7 Bayesian Networks

Finding causal relationships is a challenging task, as we saw in Section 24.3.6. In

general, if certain events are highly correlated, there are many possible explanations.

For example, suppose that pens, pencils, and ink are purchased together frequently. It

might be the case that the purchase of one of these items (e.g., ink) depends causally

upon the purchase of another item (e.g., pen). Or it might be the case that the purchase

of one of these items (e.g., pen) is strongly correlated with the purchase of another (e.g.,

pencil) because there is some underlying phenomenon (e.g., users’ tendency to think

about writing instruments together) that causally influences both purchases. How can

we identify the true causal relationships that hold between these events in the real

world?

One approach is to consider each possible combination of causal relationships among

the variables or events of interest to us and to evaluate the likelihood of each combina-



720 Chapter 24

tion on the basis of the data available to us. If we think of each combination of causal

relationships as a model of the real world underlying the collected data, we can assign

a score to each model by considering how consistent it is (in terms of probabilities,

with some simplifying assumptions) with the observed data. Bayesian networks are

graphs that can be used to describe a class of such models, with one node per variable

or event, and arcs between nodes to indicate causality. For example, a good model for

our running example of pens, pencils, and ink is shown in Figure 24.6. In general, the

number of possible models is exponential in the number of variables, and considering

all models is expensive, so some subset of all possible models is evaluated.

Think of

writing instruments

Buy pens

Buy pencils

Buy ink

Figure 24.6 Bayesian Network Showing Causality

24.3.8 Classification and Regression Rules

Consider the following view that contains information from a mailing campaign per-

formed by a publishing company:

InsuranceInfo(age: integer, cartype: string, highrisk: boolean)

The InsuranceInfo view has information about current customers. Each record contains

a customer’s age and type of car as well as a flag indicating whether the person is

considered a high-risk customer. If the flag is true, the customer is considered high-

risk. We would like to use this information to identify rules that predict the insurance

risk of new insurance applicants whose age and car type are known. For example, one

such rule could be: “If age is between 16 and 25 and cartype is either Sports or Truck,

then the risk is high.”

Note that the rules we want to find have a specific structure. We are not interested

in rules that predict the age or type of car of a person; we are only interested in

rules that predict the insurance risk. Thus, there is one designated attribute whose

value we would like to predict and we will call this attribute the dependent attribute.

The other attributes are called predictor attributes. In our example, the dependent

attribute in the InsuranceInfo view is the highrisk attribute and the predictor attributes

are age and cartype. The general form of the types of rules we want to discover is:

P1(X1) ∧ P2(X2) . . . ∧ Pk(Xk) ⇒ Y = c



Data Mining 721

The predictor attributes X1, . . . , Xk are used to predict the value of the dependent

attribute Y . Both sides of a rule can be interpreted as conditions on fields of a tuple.

The Pi(Xi) are predicates that involve attribute Xi. The form of the predicate de-

pends on the type of the predictor attribute. We distinguish two types of attributes:

numerical and categorical attributes. For numerical attributes, we can perform

numerical computations such as computing the average of two values, whereas for cat-

egorical attributes their domain is a set of values. In the InsuranceInfo view, age is a

numerical attribute whereas cartype and highrisk are categorical attributes. Returning

to the form of the predicates, if Xi is a numerical attribute, its predicate Pi is of the

form li ≤ Xi ≤ hi; if Xi is a categorical attribute, Pi is of the form Xi ∈ {v1, . . . , vj}.

If the dependent attribute is categorical, we call such rules classification rules. If

the dependent attribute is numerical, we call such rules regression rules.

For example, consider again our example rule: “If age is between 16 and 25 and cartype

is either Sports or Truck, then highrisk is true.” Since highrisk is a categorical attribute,

this rule is a classification rule. We can express this rule formally as follows:

(16 ≤ age ≤ 25) ∧ (cartype ∈ {Sports, Truck}) ⇒ highrisk = true

We can define support and confidence for classification and regression rules, as for

association rules:

Support: The support for a condition C is the percentage of tuples that satisfy

C. The support for a rule C1 ⇒ C2 is the support for the condition C1 ∧ C2.

Confidence: Consider those tuples that satisfy condition C1. The confidence for

a rule C1 ⇒ C2 is the percentage of such tuples that also satisfy condition C2.

As a further generalization, consider the right-hand side of a classification or regression

rule: Y = c. Each rule predicts a value of Y for a given tuple based on the values of

predictor attributes X1, . . . , Xk. We can consider rules of the form:

P1(X1) ∧ . . . ∧ Pk(Xk) ⇒ Y = f(X1, . . . , Xk)

where f is some function. We will not discuss such rules further.

Classification and regression rules differ from association rules by considering contin-

uous and categorical fields, rather than only one field that is set-valued. Identifying

such rules efficiently presents a new set of challenges and we will not discuss the general

case of discovering such rules. We will discuss a special type of such rules in Section

24.4.

Classification and regression rules have many applications. Examples include classifi-

cation of results of scientific experiments, where the type of object to be recognized



722 Chapter 24

depends on the measurements taken; direct mail prospecting, where the response of a

given customer to a promotion is a function of his or her income level and age; and

car insurance risk assessment, where a customer could be classified as risky depending

on his age, profession, and car type. Example applications of regression rules include

financial forecasting, where the price of coffee futures could be some function of the

rainfall in Colombia a month ago, and medical prognosis, where the likelihood of a

tumor being cancerous is a function of measured attributes of the tumor.

24.4 TREE-STRUCTURED RULES

In this section, we discuss the problem of discovering classification and regression rules

from a relation, but we consider only rules that have a very special structure. The type

of rules that we discuss can be represented by a tree, and typically the tree itself is the

output of the data mining activity. Trees that represent classification rules are called

classification trees or decision trees and trees that represent regression rules are

called regression trees.

Age

Car Type

>25

Sports, TruckSedan

NO

YESNO

<= 25

Figure 24.7 Insurance Risk Example Decision Tree

As an example, consider the decision tree shown in Figure 24.7. Each path from the

root node to a leaf node represents one classification rule. For example, the path from

the root to the leftmost leaf node represents the classification rule: “If a person is 25

years or younger and drives a sedan, then he is likely to have a low insurance risk.”

The path from the root to the right-most leaf node represents the classification rule:

“If a person is older than 25 years, then he is likely to have a low insurance risk.”

Tree-structured rules are very popular since they are easy to interpret. Ease of un-

derstanding is very important, since the result of any data mining activity needs to

be comprehensible by nonspecialists. In addition, studies have shown that despite

limitations in structure, tree-structured rules are very accurate. There exist efficient



Data Mining 723

algorithms to construct tree-structured rules from large databases. We will discuss a

sample algorithm for decision tree construction in the remainder of this section.

24.4.1 Decision Trees

A decision tree is a graphical representation of a collection of classification rules. Given

a data record, the tree directs the record from the root to a leaf. Each internal node of

the tree is labeled with a predictor attribute. This attribute is often called a splitting

attribute, because the data is ‘split’ based on conditions over this attribute. The

outgoing edges of an internal node are labeled with predicates that involve the splitting

attribute of the node; every data record entering the node must satisfy the predicate

labeling exactly one outgoing edge. The combined information about the splitting

attribute and the predicates on the outgoing edges is called the splitting criterion

of the node. A node with no outgoing edges is called a leaf node. Each leaf node of

the tree is labeled with a value of the dependent attribute. We only consider binary

trees where internal nodes have two outgoing edges, although trees of higher degree

are possible.

Consider the decision tree shown in Figure 24.7. The splitting attribute of the root

node is age, the splitting attribute of the left child of the root node is cartype. The

predicate on the left outgoing edge of the root node is age ≤ 25, the predicate on the

right outgoing edge is age > 25.

We can now associate a classification rule with each leaf node in the tree as follows.

Consider the path from the root of the tree to the leaf node. Each edge on that path

is labeled with a predicate. The conjunction of all these predicates makes up the left

hand side of the rule. The value of the dependent attribute at the leaf node makes

up the right-hand side of the rule. Thus, the decision tree represents a collection of

classification rules, one for each leaf node.

A decision tree is usually constructed in two phases. In phase one, the growth phase,

an overly large tree is constructed. This tree represents the records in the input

database very accurately; for example, the tree might contain leaf nodes for individual

records from the input database. In phase two, the pruning phase, the final size of

the tree is determined. The rules represented by the tree constructed in phase one are

usually overspecialized. By reducing the size of the tree, we generate a smaller number

of more general rules that are better than a very large number of very specialized rules.

Algorithms for tree pruning are beyond our scope of discussion here.

Classification tree algorithms build the tree greedily top-down in the following way.

At the root node, the database is examined and the locally ‘best’ splitting criterion

is computed. The database is then partitioned, according to the root node’s splitting

criterion, into two parts, one partition for the left child and one partition for the



724 Chapter 24

Input: node n, partition D, split selection method S

Output: decision tree for D rooted at node n

Top-Down Decision Tree Induction Schema:

BuildTree(Node n, data partition D, split selection method S)

(1) Apply S to D to find the splitting criterion

(2) if (a good splitting criterion is found)

(3) Create two children nodes n1 and n2 of n

(4) Partition D into D1 and D2

(5) BuildTree(n1, D1, S)

(6) BuildTree(n2, D2, S)

(7) endif

Figure 24.8 Decision Tree Induction Schema

right child. The algorithm then recurses on each child. This schema is depicted in

Figure 24.8.

The splitting criterion at a node is found through application of a split selection

method. A split selection method is an algorithm that takes as input (part of) a

relation and outputs the locally ‘best’ splitting criterion. In our example, the split se-

lection method examines the attributes cartype and age, selects one of them as splitting

attribute, and then selects the splitting predicates. Many different, very sophisticated

split selection methods have been developed; the references provide pointers to the

relevant literature.

age cartype highrisk

23 Sedan false

30 Sports false

36 Sedan false

25 Truck true

30 Sedan false

23 Truck true

30 Truck false

25 Sports true

18 Sedan false

Figure 24.9 The InsuranceInfo Relation



Data Mining 725

24.4.2 An Algorithm to Build Decision Trees

If the input database fits into main memory we can directly follow the classification

tree induction schema shown in Figure 24.8. How can we construct decision trees when

the input relation is larger than main memory? In this case, step (1) in Figure 24.8

fails, since the input database does not fit in memory. But we can make one important

observation about split selection methods that helps us to reduce the main memory

requirements.

Consider a node of the decision tree. The split selection method has to make two

decisions after examining the partition at that node: (i) It has to select the splitting

attribute, and (ii) It has to select the splitting predicates for the outgoing edges. Once

decided on the splitting criterion, the algorithm is recursively applied to each of the

children of the node. Does a split selection method actually need the complete database

partition as input? Fortunately, the answer is no.

Split selection methods that compute splitting criteria that involve a single predic-

tor attribute at each node evaluate each predictor attribute individually. Since each

attribute is examined separately, we can provide the split selection method with aggre-

gated information about the database instead of loading the complete database into

main memory. Chosen correctly, this aggregated information is sufficient to compute

the ‘best’ splitting criterion—the same splitting criterion as if the complete database

would reside in main memory.

Since the split selection method examines all predictor attributes, we need aggregated

information about each predictor attribute. We call this aggregated information the

AVC set of the predictor attribute. The AVC set of a predictor attribute X at

node n is the projection of n’s database partition onto X and the dependent attribute

where counts of the individual values in the domain of the dependent attribute are

aggregated. (The acronym AVC stands for Attribute-Value, Classlabel, because the

values of the dependent attribute are often called class labels.) For example, consider

the InsuranceInfo relation as shown in Figure 24.9. The AVC set of the root node of

the tree for predictor attribute age is the result of the following database query:

SELECT R.age, R.highrisk, COUNT (*)

FROM InsuranceInfo R

GROUP BY R.age, R.highrisk

The AVC set for the left child of the root node for predictor attribute cartype is the

result of the following query:

SELECT R.cartype, R.highrisk, COUNT (*)

FROM InsuranceInfo R



726 Chapter 24

WHERE R.age <= 25

GROUP BY R.cartype, R.highrisk

The two AVC sets of the root node of the tree are shown in Figure 24.10.

highrisk
Car type

true false

Sedan 0 4

Sports 1 1

Truck 2 1

highrisk
Age

true false

18 0 1

23 1 1

25 2 0

30 0 3

36 0 1

Figure 24.10 AVC Group of the Root Node for the InsuranceInfo Relation

We define the AVC group of a node n to be the set of the AVC sets of all predictor

attributes at node n. In our example of the InsuranceInfo relation, there are two

predictor attributes; therefore, the AVC group of any node consists of two AVC sets.

How large are AVC sets? Note that the size of the AVC set of a predictor attribute X

at node n depends only on the number of distinct attribute values of X and the size of

the domain of the dependent attribute. For example, consider the AVC sets shown in

Figure 24.10. The AVC set for the predictor attribute cartype has three entries, and

the AVC set for predictor attribute age has five entries, although the InsuranceInfo

relation as shown in Figure 24.9 has nine records. For large databases, the size of the

AVC sets is independent of the number of tuples in the database, except if there are

attributes with very large domains, e.g., a real-valued field that is recorded at a very

high precision with many digits after the decimal point.

If we make the simplifying assumption that all the AVC sets of the root node together

fit into main memory, then we can construct decision trees from very large databases

as follows: We make a scan over the database and construct the AVC group of the root

node in memory. Then we run the split selection method of our choice with the AVC

group as input. After the split selection method computes the splitting attribute and

the splitting predicates on the outgoing nodes, we partition the database and recurse.

Note that this algorithm is very similar to the original algorithm shown in Figure 24.8;

the only modification necessary is shown in Figure 24.11. In addition, this algorithm

is still independent of the actual split selection method involved.

24.5 CLUSTERING

In this section we discuss the clustering problem. The goal is to partition a set

of records into groups such that records within a group are similar to each other and



Data Mining 727

Input: node n, partition D, split selection method S

Output: decision tree for D rooted at node n

Top-Down Decision Tree Induction Schema:

BuildTree(Node n, data partition D, split selection method S)

(1a) Make a scan over D and construct the AVC group of n in-memory

(1b) Apply S to the AVC group to find the splitting criterion

Figure 24.11 Classification Tree Induction Refinement with AVC Groups

records that belong to two different groups are dissimilar. Each such group is called

a cluster and each record belongs to exactly one cluster.1 Similarity between records

is measured computationally by a distance function. A distance function takes

two input records and returns a value that is a measure of their similarity. Different

applications have different notions of similarity and there is no one measure that works

for all domains.

As an example, consider the schema of the CustomerInfo view:

CustomerInfo(age: int, salary: real)

We can plot the records in the view on a two-dimensional plane as shown in Figure

24.12. The two coordinates of a record are the values of the record’s salary and age

fields. We can visually identify three clusters: Young customers who have low salaries,

young customers with high salaries, and older customers with high salaries.

Usually, the output of a clustering algorithm consists of a summarized represen-

tation of each cluster. The type of summarized representation depends strongly on

the type and shape of clusters the algorithm computes. For example, assume that we

have spherical clusters as in the example shown in Figure 24.12. We can summarize

each cluster by its center (often also called the mean) and its radius which are defined

as follows. Given a collection of records r1, . . . , rn, their center C and radius R are

defined as follows:

C =
1

n

n
∑

i=1

ri, and R =

√

∑n

i=1
(ri − C)

n

There are two types of clustering algorithms. A partitional clustering algorithm

partitions the data into k groups such that some criterion that evaluates the clustering

quality is optimized. The number of clusters k is a parameter whose value is specified

1There are clustering algorithms that allow overlapping clusters, where a record can potentially

belong to several clusters.



728 Chapter 24

Age

30k

60k

Salary

604020

C

A

B

Figure 24.12 Records in CustomerInfo

by the user. A hierarchical clustering algorithm generates a sequence of partitions

of the records. Starting with a partition in which each cluster consists of one single

record, the algorithm merges two partitions in each step until only one single partition

remains in the end.

24.5.1 A Clustering Algorithm

Clustering is a very old problem and numerous algorithms have been developed to clus-

ter a collection of records. Traditionally, the number of records in the input database

was assumed to be relatively small and the complete database was assumed to fit

into main memory. In this section we describe a clustering algorithm called BIRCH

that handles very large databases. The design of BIRCH reflects the following two

assumptions:

The number of records is potentially very large and therefore we want to make

only one scan over the database.

We have only a limited amount of main memory available.

A user can set two parameters to control the BIRCH algorithm. The first parameter

is a threshold on the amount of main memory available. This main memory threshold

translates into a maximum number of cluster summaries k that can be maintained in

memory. The second parameter ǫ is an initial threshold for the radius of any cluster.

The value of ǫ is an upper bound on the radius of any cluster and controls the number

of clusters that the algorithm discovers. If ǫ is small, we discover many small clusters;

if ǫ is large, we discover very few clusters, each of which is relatively large. We say

that a cluster is compact if its radius is smaller than ǫ.



Data Mining 729

BIRCH always maintains k or fewer cluster summaries (Ci, Ri) in main memory, where

Ci is the center of cluster i and Ri is the radius of cluster i. The algorithm always

maintains compact clusters, i.e., the radius of each cluster is less than ǫ. If this invari-

ant cannot be maintained with the given amount of main memory, ǫ is increased as

described below.

The algorithm reads records from the database sequentially and processes them as

follows:

1. Compute the distance between record r and each of the existing cluster centers.

Let i be the cluster index such that the distance between r and Ci is the smallest.

2. Compute the value of the new radius R′

i of the ith cluster under the assumption

that r is inserted into it. If R′

i ≤ ǫ, then the ith cluster remains compact and we

assign r to the ith cluster by updating its center and setting its radius to R′

i. If

R′

i > ǫ, then the ith cluster is no longer compact if we insert r into it. Therefore,

we start a new cluster containing only the record r.

The second step above presents a problem if we already have the maximum number

of cluster summaries, k. If we now read a record that requires us to create a new

cluster, we don’t have the main memory required to hold its summary. In this case,

we increase the radius threshold ǫ—using some heuristic to determine the increase—in

order to merge existing clusters: An increase of ǫ has two consequences. First, existing

clusters can accommodate ‘more’ records, since their maximum radius has increased.

Second, it might be possible to merge existing clusters such that the resulting cluster

is still compact. Thus, an increase in ǫ usually reduces the number of existing clusters.

The complete BIRCH algorithm uses a balanced in-memory tree, which is similar to a

B+ tree in structure, to quickly identify the closest cluster center for a new record. A

description of this data structure is beyond the scope of our discussion.

24.6 SIMILARITY SEARCH OVER SEQUENCES

A lot of information stored in databases consists of sequences. In this section, we

introduce the problem of similarity search over a collection of sequences. Our query

model is very simple: We assume that the user specifies a query sequence and wants

to retrieve all data sequences that are similar to the query sequence. Similarity search

is different from ‘normal’ queries in that we are not only interested in sequences that

match the query sequence exactly, but also in sequences that differ only slightly from

the query sequence.

We begin by describing sequences and similarity between sequences. A data sequence

X is a series of numbers X = 〈x1, . . . , xk〉. Sometimes X is also called a time series.

We call k the length of the sequence. A subsequence Z = 〈z1, . . . , zj〉 is obtained



730 Chapter 24

from another sequence X = 〈x1, . . . , xk〉 by deleting numbers from the front and back

of the sequence X. Formally, Z is a subsequence of X if z1 = xi, z2 = xi+1, . . . , zj =

zi+j−1 for some i ∈ {1, . . . , k − j + 1}. Given two sequences X = 〈x1, . . . , xk〉 and

Y = 〈y1, . . . , yk〉, we can define the Euclidean norm as the distance between the two

sequences as follows:

‖X − Y ‖ =
k

∑

i=1

(xi − yi)
2

Given a user-specified query sequence and a threshold parameter ǫ, our goal is to

retrieve all data sequences that are within ǫ-distance to the query sequence.

Similarity queries over sequences can be classified into two types.

Complete sequence matching: The query sequence and the sequences in the

database have the same length. Given a user-specified threshold parameter ǫ, our

goal is to retrieve all sequences in the database that are within ǫ-distance to the

query sequence.

Subsequence matching: The query sequence is shorter than the sequences in

the database. In this case, we want to find all subsequences of sequences in the

database such that the subsequence is within distance ǫ of the query sequence.

We will not discuss subsequence matching.

24.6.1 An Algorithm to Find Similar Sequences

Given a collection of data sequences, a query sequence, and a distance threshold ǫ,

how can we efficiently find all sequences that are within ǫ-distance from the query

sequence?

One possibility is to scan the database, retrieve each data sequence, and compute its

distance to the query sequence. Even though this algorithm is very simple, it always

retrieves every data sequence.

Because we consider the complete sequence matching problem, all data sequences and

the query sequence have the same length. We can think of this similarity search as

a high-dimensional indexing problem. Each data sequence and the query sequence

can be represented as a point in a k-dimensional space. Thus, if we insert all data

sequences into a multidimensional index, we can retrieve data sequences that exactly

match the query sequence by querying the index. But since we want to retrieve not

only data sequences that match the query exactly, but also all sequences that are

within ǫ-distance from the query sequence, we do not use a point query as defined

by the query sequence. Instead, we query the index with a hyper-rectangle that has

side-length 2 · ǫ and the query sequence as center, and we retrieve all sequences that



Data Mining 731

Two example data mining products—IBM Intelligent Miner and Sili-

con Graphics Mineset: Both products offer a wide range of data mining algo-

rithms including association rules, regression, classification, and clustering. The

emphasis of Intelligent Miner is on scalability—the product contains versions of

all algorithms for parallel computers and is tightly integrated with IBM’s DB2

database system. Mineset supports extensive visualization of all data mining re-

sults, utilizing the powerful graphics features of SGI workstations.

fall within this hyper-rectangle. We then discard sequences that are actually further

than only a distance of ǫ away from the query sequence.

Using the index allows us to greatly reduce the number of sequences that we consider

and decreases the time to evaluate the similarity query significantly. The references at

the end of the chapter provide pointers to further improvements.

24.7 ADDITIONAL DATA MINING TASKS

We have concentrated on the problem of discovering patterns from a database. There

are several other equally important data mining tasks, some of which we discuss briefly

below. The bibliographic references at the end of the chapter provide many pointers

for further study.

Dataset and feature selection: It is often important to select the ‘right’ dataset

to mine. Dataset selection is the process of finding which datasets to mine. Feature

selection is the process of deciding which attributes to include in the mining process.

Sampling: One way to explore a large dataset is to obtain one or more samples and

to analyze the samples. The advantage of sampling is that we can carry out detailed

analysis on a sample that would be infeasible on the entire dataset, for very large

datasets. The disadvantage of sampling is that obtaining a representative sample for

a given task is difficult; we might miss important trends or patterns because they are

not reflected in the sample. Current database systems also provide poor support for

efficiently obtaining samples. Improving database support for obtaining samples with

various desirable statistical properties is relatively straightforward and is likely to be

available in future DBMSs. Applying sampling for data mining is an area for further

research.

Visualization: Visualization techniques can significantly assist in understanding com-

plex datasets and detecting interesting patterns, and the importance of visualization

in data mining is widely recognized.



732 Chapter 24

24.8 POINTS TO REVIEW

Data mining consists of finding interesting patterns in large datasets. It is part

of an iterative process that involves data source selection, preprocessing, transfor-

mation, data mining, and finally interpretation of results. (Section 24.1)

An itemset is a collection of items purchased by a customer in a single customer

transaction. Given a database of transactions, we call an itemset frequent if it is

contained in a user-specified percentage of all transactions. The a priori prop-

erty is that every subset of a frequent itemset is also frequent. We can identify

frequent itemsets efficiently through a bottom-up algorithm that first generates

all frequent itemsets of size one, then size two, and so on. We can prune the

search space of candidate itemsets using the a priori property. Iceberg queries are

SELECT-FROM-GROUP BY-HAVING queries with a condition involving aggregation in

the HAVING clause. Iceberg queries are amenable to the same bottom-up strategy

that is used for computing frequent itemsets. (Section 24.2)

An important type of pattern that we can discover from a database is a rule.

Association rules have the form LHS ⇒ RHS with the interpretation that if every

item in the LHS is purchased, then it is likely that items in the RHS are pur-

chased as well. Two important measures for a rule are its support and confidence.

We can compute all association rules with user-specified support and confidence

thresholds by post-processing frequent itemsets. Generalizations of association

rules involve an ISA hierarchy on the items and more general grouping condi-

tions that extend beyond the concept of a customer transaction. A sequential

pattern is a sequence of itemsets purchased by the same customer. The type of

rules that we discussed describe associations in the database and do not imply

causal relationships. Bayesian networks are graphical models that can represent

causal relationships. Classification and regression rules are more general rules that

involve numerical and categorical attributes. (Section 24.3)

Classification and regression rules are often represented in the form of a tree. If

a tree represents a collection of classification rules, it is often called a decision

tree. Decision trees are constructed greedily top-down. A split selection method

selects the splitting criterion at each node of the tree. A relatively compact data

structure, the AVC set contains sufficient information to let split selection methods

decide on the splitting criterion. (Section 24.4)

Clustering aims to partition a collection of records into groups called clusters such

that similar records fall into the same cluster and dissimilar records fall into dif-

ferent clusters. Similarity is usually based on a distance function. (Section 24.5)

Similarity queries are different from exact queries in that we also want to retrieve

results that are slightly different from the exact answer. A sequence is an or-

dered series of numbers. We can measure the difference between two sequences

by computing the Euclidean distance between the sequences. In similarity search



Data Mining 733

over sequences, we are given a collection of data sequences, a query sequence, and

a threshold parameter ǫ and want to retrieve all data sequences that are within

ǫ-distance from the query sequence. One approach is to represent each sequence

as a point in a multidimensional space and then use a multidimensional indexing

method to limit the number of candidate sequences returned. (Section 24.6)

Additional data mining tasks include dataset and feature selection, sampling, and

visualization. (Section 24.7)

EXERCISES

Exercise 24.1 Briefly answer the following questions.

1. Define support and confidence for an association rule.

2. Explain why association rules cannot be used directly for prediction, without further

analysis or domain knowledge.

3. Distinguish between association rules, classification rules, and regression rules.

4. Distinguish between classification and clustering.

5. What is the role of information visualization in data mining?

6. Give examples of queries over a database of stock price quotes, stored as sequences, one

per stock, that cannot be expressed in SQL.

Exercise 24.2 Consider the Purchases table shown in Figure 24.1.

1. Simulate the algorithm for finding frequent itemsets on this table with minsup=90 per-

cent, and then find association rules with minconf=90 percent.

2. Can you modify the table so that the same frequent itemsets are obtained with minsup=90

percent as with minsup=70 percent on the table shown in Figure 24.1?

3. Simulate the algorithm for finding frequent itemsets on the table in Figure 24.1 with

minsup=10 percent and then find association rules with minconf=90 percent.

4. Can you modify the table so that the same frequent itemsets are obtained with minsup=10

percent as with minsup=70 percent on the table shown in Figure 24.1?

Exercise 24.3 Consider the Purchases table shown in Figure 24.1. Find all (generalized)

association rules that indicate likelihood of items being purchased on the same date by the

same customer, with minsup=10 percent and minconf=70 percent.

Exercise 24.4 Let us develop a new algorithm for the computation of all large itemsets.

Assume that we are given a relation D similar to the Purchases table shown in Figure 24.1.

We partition the table horizontally into k parts D1, . . . , Dk.

1. Show that if itemset x is frequent in D, then it is frequent in at least one of the k parts.

2. Use this observation to develop an algorithm that computes all frequent itemsets in two

scans over D. (Hint: In the first scan, compute the locally frequent itemsets for each

part Di, i ∈ {1, . . . , k}.)



734 Chapter 24

3. Illustrate your algorithm using the Purchases table shown in Figure 24.1. The first

partition consists of the two transactions with transid 111 and 112, the second partition

consists of the two transactions with transid 113 and 114. Assume that the minimum

support is 70 percent.

Exercise 24.5 Consider the Purchases table shown in Figure 24.1. Find all sequential pat-

terns with minsup= 60 percent. (The text only sketches the algorithm for discovering sequen-

tial patterns; so use brute force or read one of the references for a complete algorithm.)

age salary subscription

37 45k No

39 70k Yes

56 50k Yes

52 43k Yes

35 90k Yes

32 54k No

40 58k No

55 85k Yes

43 68k Yes

Figure 24.13 The SubscriberInfo Relation

Exercise 24.6 Consider the SubscriberInfo Relation shown in Figure 24.13. It contains

information about the marketing campaign of the DB Aficionado magazine. The first two

columns show the age and salary of a potential customer and the subscription column shows

whether the person subscribed to the magazine. We want to use this data to construct a

decision tree that helps to predict whether a person is going to subscribe to the magazine.

1. Construct the AVC-group of the root node of the tree.

2. Assume that the spliting predicate at the root node is age≤ 50. Construct the AVC-

groups of the two children nodes of the root node.

Exercise 24.7 Assume you are given the following set of six records: 〈7, 55〉, 〈21, 202〉,

〈25, 220〉, 〈12, 73〉, 〈8, 61〉, and 〈22, 249〉.

1. Assuming that all six records belong to a single cluster, compute its center and radius.

2. Assume that the first three records belong to one cluster and the second three records

belong to a different cluster. Compute the center and radius of the two clusters.

3. Which of the two clusterings is ‘better’ in your opinion and why?

Exercise 24.8 Assume you are given the three sequences 〈1, 3, 4〉, 〈2, 3, 2〉, 〈3, 3, 7〉. Compute

the Euclidian norm between all pairs of sequences.

BIBLIOGRAPHIC NOTES

Discovering useful knowledge from a large database is more than just applying a collection

of data mining algorithms, and the point of view that it is an iterative process guided by



Data Mining 735

an analyst is stressed in [227] and [579]. Work on exploratory data analysis in statistics, for

example, [654], and on machine learning and knowledge discovery in artificial intelligence was

a precursor to the current focus on data mining; the added emphasis on large volumes of

data is the important new element. Good recent surveys of data mining algorithms include

[336, 229, 441]. [228] contains additional surveys and articles on many aspects of data mining

and knowledge discovery, including a tutorial on Bayesian networks [313]. The book by

Piatetsky-Shapiro and Frawley [518] and the book by Fayyad, Piatetsky-Shapiro, Smyth, and

Uthurusamy [230] contain collections of data mining papers. The annual SIGKDD conference,

run by the ACM special interest group in knowledge discovery in databases, is a good resource

for readers interested in current research in data mining [231, 602, 314, 21], as is the Journal

of Knowledge Discovery and Data Mining.

The problem of mining association rules was introduced by Agrawal, Imielinski, and Swami

[16]. Many efficient algorithms have been proposed for the computation of large itemsets,

including [17]. Iceberg queries have been introduced by Fang et al. [226]. There is also a

large body of research on generalized forms of association rules; for example [611, 612, 614].

A fast algorithm based on sampling is proposed in [647]. Parallel algorithms are described in

[19] and [570]. [249] presents an algorithm for discovering association rules over a continuous

numeric attribute; association rules over numeric attributes are also discussed in [687]. The

general form of association rules in which attributes other than the transaction id are grouped

is developed in [459]. Association rules over items in a hierarchy are discussed in [611, 306].

Further extensions and generalization of association rules are proposed in [98, 492, 352].

Integration of mining for frequent itemsets into database systems has been addressed in [569,

652]. The problem of mining sequential patterns is discussed in [20], and further algorithms

for mining sequential patterns can be found in [444, 613].

General introductions to classification and regression rules can be found in [307, 462]. The

classic reference for decision and regression tree construction is the CART book by Breiman,

Friedman, Olshen, and Stone [94]. A machine learning perspective of decision tree con-

struction is given by Quinlan [526]. Recently, several scalable algorithms for decision tree

construction have been developed [264, 265, 453, 539, 587].

The clustering problem has been studied for decades in several disciplines. Sample textbooks

include [195, 346, 357]. Sample scalable clustering algorithms include CLARANS [491], DB-

SCAN [211, 212], BIRCH [698], and CURE [292]. Bradley, Fayyad and Reina address the

problem of scaling the K-Means clustering algorithm to large databases [92, 91]. The problem

of finding clusters in subsets of the fields is addressed in [15]. Ganti et al. examine the problem

of clustering data in arbitrary metric spaces [258]. Algorithms for clustering caterogical data

include STIRR [267] and CACTUS [257].

Sequence queries have received a lot of attention recently. Extending relational systems, which

deal with sets of records, to deal with sequences of records is investigated in [410, 578, 584].

Finding similar sequences from a large database of sequences is discussed in [18, 224, 385,

528, 592].


